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The hopping motion of classical particles on a chain coupled to reservoirs at 
both ends is studied for parallel dynamics with arbitrary probabilities. The 
stationary state is obtained in the form of an alternating matrix product. The 
properties of one- and two-dimensional representations are studied in detail and 
a general relation of the matrix algebra to that of the sequential limit is found. 
In this way the general phase diagram of the model is obtained. The mechanism 
of the sequential limit, the formulation as a vertex model, and other aspects are 
discussed. 
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1. I N T R O D U C T I O N  

The s tudy of  classical  kinet ic  mode l s  in one d imens ion  has  revealed inter-  
est ing phys ica l  p roper t i e s  (e.g. non -equ i l i b r i um phase  t r ans i t ions )  a n d  
m a t h e m a t i c a l  s tructures.  Moreover ,  one finds close connec t ions  wi th  quan-  
t um-mechan ica l  spin p rob lems .  A p r o m i n e n t  example  is the diffusion o f  
par t ic les  wi th  ha rd -co re  repuls ion  on the sites of  a cha in  which  is coup led  
to  reservoirs  a t  bo th  ends  [ 1 -4] .  This  m o d e l  shows at  least  three  phases  
which  differ in their  dens i ty  profi les and  the cur ren t  t h r o u g h  the system. 
B o u n d a r y  effects, i.e. the rates  a t  which  par t ic les  en ter  and  leave the  system, 
p l ay  an essential  r61e. Ma thema t i ca l ly ,  the  m o d e l  can  be descr ibed  as a spin  
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one-half problem and, if the dynamics consists of single particle processes, 
the time evolution operator of the master equation has the form of the 
Hamiltonian of the Heisenberg model with boundary fields at both ends. 
The stat ionary state can be written in the form of a matrix product, 
where the weight of a configuration is given by an expression of the form 
(W[ ABBAB...  [V) with operators A, B and vectors (W[ ,  IV) in an 
auxiliary space. Such states, which generalize simple product states so as to 
give non-trivial correlations, were first found in a problem of lattice 
animals [5 ] and for certain quantum spin chains [6-8 ]. They have also 
been encountered in diffusion-coagulation models [9] .  The detailed 
mechanism is somewhat different in each of the three cases. 

In the following we will study this model with a more general type of 
dynamics. The time is taken discrete and in each time step, hopping pro- 
cesses between half of all pairs of nearest-neighbour sites can take place. 
This is not yet full parallel dynamics as desired e.g. in traffic-flow problems, 
but we will still term it "parallel." This model has been considered before 
in the case of deterministic uni-directional motion on the chain [ 10]. Here 
we will treat the general case where the particles hop with probabilities p 
and q to the right and left, respectively. This contains the deterministic as 
well as the sequential dynamics of the master equation as special cases. The 
latter is obtained if all probabilities tend towards zero. This limiting case 
corresponds to the Hamiltonian limit in two-dimensional statistical physics. 
In fact, there is a close relation to that area, since the parallel dynamics can 
be formulated as an asymmetric six-vertex model with additional boundary 
terms. 

It turns out that this general model has properties which are quite 
similar to those of the sequential limit. One physical distinction is a station- 
ary density which alternates from site to site and which results from the 
boundary terms combined with the structure of our parallel dynamics. The 
matrix-product groundstate, which also exists here, has a corresponding 
sublattice structure. The mechanism for the stationary state is the same as 
already encountered in the deterministic limit p = 1, q = 0  [ 10]. In each 
time step (corresponding to the action of one row of vertices in the vertex 
model), the sublattices exchange their r61e, so that after two steps the 
state is reproduced. It should be mentioned that simple (scalar) product 
states in two-dimensional models were studied already some time ago. For  
example, a homogeneous state of that type was found for special cases of 
eight-vertex models with fields [ 11 ]. Alternating states were considered in 
[12, 13] for the case of IRF models which are the dual formulation of 
vertex models. In the context of spin systems, such states are called 
"disorder solutions" and usually result from competing interactions (see 
[ 14] and references therein). 
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To obtain the stationary state, one may try to find a finite-dimensional 
representation of the four operators defining the algebra and the corre- 
sponding vectors satisfying the boundary relations. Here we present a 
scalar product  state (i.e. a one-dimensional representation) and a represen- 
tation in terms of two-dimensional matrices. These representations exist for 
special submanifolds in the parameter  space. The study of the two-dimen- 
sional representation provides an important  clue to solving the problem in 
general. Namely, by using a certain relation between the operators,  it is 
possible to eliminate the ones on one sublattice such that one can lift 
any representation of the algebra in the sequential limit with suitably 
"renormalized" parameters  to a representation of the algebra for parallel 
dynamics. This feature has also been discovered independently in [ 15] 
where the same algebra was used to describe the stationary state for a 
different dynamics where the updating is done step-by-step from one end of 
the chain to the other. 3 Using this connection, we can take over methods 
for the sequential case, e.g. to calculate the current or the density profile in 
the general case. In this way, one obtains a rather complete picture. 

The paper  is organized as follows. In Section 2 we introduce the 
model, discuss the vertex formulation, the Hamil tonian limit, and set up 
relations for the matr ix-product  state. In Section 3 we find one- and two- 
dimensional matrix representations for the algebra arising from the matrix- 
product ansatz which leads to a mapping to the sequential case presented 
in Section 4. This is used in Section 5 to compute the current for general 
values of the parameters. Section 6 contains a discussion of the results and 
remarks on some other aspects as the relation to the model in [ 15 ] and the 
integrability of the model. A few computat ions are shifted to appendices 
which also contain some supplementary material. 

2. M O D E L  A N D  M A T R I X - P R O D U C T  A N S A T Z  

The diffusion of particles with hard-core repulsion is a stochastic 
process on a lattice which we here choose to be one-dimensional with N 
sites where N is even. Each site can have two states: It  can either be empty 
or it can be occupied by one particle. Particles can hop along the bonds of 
the lattice onto empty sites, to the right with probabil i ty p and to the left 
with probabili ty q. At the left and right boundaries particles can be added 
or extracted. Particles are added to an empty leftmost site with probabili ty 

and removed from it with probabili ty ~. At the right boundary  they are 

3 In this paper we will use a different terminology than in [ 15]. We reserve the term "sequen- 
tial" for a situation where in each time step only one local process can take place, but at a 
random position. 
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extracted with probability fl and added with probability 3. All theses 
processes can take place simultaneously, but updates are performed in two 
steps in order to permit at most one hopping process at each site in any 
time step. Particles are removed and added at the boundaries during the 
first time step. During this time step they can also hop along the bonds 
connecting the even sites with the odd ones to their right. During the 
second time step they can hop only along the other bonds. Because of the 
restriction that a site may be occupied by at most one particle, this is a 
non-trivial many-body problem. 

For these update rules the time transfer matrix T which describes the 
time evolution of the probability distribution has the structure T =  T2 T~ 
where T~ accounts for all processes that can take place during the first time 
step, and T 2 for those of the second one. They are given by 

Tl = L- ,~ |174 ... | 1 7 4  

N/2 1 t i m e s  (2.1) 

T 2 = ~ | 1 7 4  ... |  
J 

N/2 t i m e s  

where the matrices ~--, s and ~ describe hopping and particle input and 
output, respectively. In a suitable basis they are given by 

1--q p 0 , I oc y 
J =  

oc 1 ~ q 1--p -- 

0 0 

( 1 - ~  f l )  (2.2) 
a 

This stochastic model can be regarded as a vertex model with the time 
evolution operator T corresponding to the diagonal-to-diagonal transfer 
matrix [ 16, 17]. This is shown in Fig. 1 where the particles sit on the bonds 
of the lattice and time evolves upwards. The initial state before application 
of T is given by the configuration of the bonds at the lower edge of the 
shaded region, and the final state is given by that at its upper border. 

The local update operators (2.2) can then be reinterpreted in terms of 
the Boltzmann weights of all possible vertex configurations as shown in 
Fig. 2 where the presence (absence) of a particle on a bond is indicated by 
an arrow pointing upwards (downwards). This vertex model is somewhat 
more complicated than the one treated in [ 18 ]. Usually, one considers the 
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Fig. 1. Representation of the hopping processes as a vertex model. Only a part of the lattice 
is shown in the vertical direction. The shaded region contains all vertices that contribute to 
the diagonal-to-diagonal transfer matrix T. 

symmetric six-vertex model which is invariant under inversion of the 
arrows (i.e. particle-hole symmetry). For  p ~ q the bulk vertices in the first 
line of Fig. 2 do not have this symmetry. More importantly, the boundary 
vertices in the second line do not conserve the particle number, because 
they correspond to particle injection and extraction. 

In this paper we shall be interested in the stationary state, i.e. a state 
that is invariant under the time evolution operator T. In the language of 
the vertex model this corresponds to the "groundstate" of the diagonal-to- 
diagonal transfer matrix. 

Because of the sublattice structure of the transfer matrix (2.1) we make 
an alternating matrix-product ansatz for the stationary state 

(2.3) 

where A, B, A and/~ are operators in an auxiliary space. The operators A 
and A describe empty places while B and /~ encode the presence of a 
particle. ] V) and I W) are vectors in this auxiliary space which have to be 
chosen suitably and have to satisfy the condition ~ W I V) r 0 in order for 
(2.3) to be non-zero. 

The mechanism of [ 10] (and similarly [ 13]) assumes that T1 as well 
as T2 exchange the operators A, B and .d, /~ with each other. At the 
boundaries this gives rise to the conditions 

(2.4) 
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1 1 p q 1 - p  1 - q  

1 - a  1 - / 3  1 -  7 1-(~ 

Fig. 2. The Boltzmann weights for the vertex model describing hopping with parallel 
dynamics. 

and for the interior one has 

After inserting the matrices (2.2), this ansatz leads to 

AA = AA, (1 - q) AB + p~A =A~,  

I~B = B~, qAB + ( 1 -p) /~A = BA, (2.6a) 

{ (1 - f i )A+f l~}  I v ) = A  IV), {62+(1 - f l ) /~}  I V ) = B I V ) ,  

( W I { ( 1 - ~ ) A + ~ B } = ( W I A ,  ~WI { o ~ A + ( 1 - y ) B } = ( W [ ~ .  

(2.6b) 

It has been argued in [ 10] that the relations (2.6) define a consistent 
associative algebra with Fock representation. However, so far the problem 
of finding the groundstate of T has just been reformulated and not yet been 
solved. In order to make further progress, one needs a representation of the 
algebra defined by the A, B, A and/~ with suitable additional properties. 
This will be the subject of Sections 3 and 4. 

The corresponding matrix-product state of the sequential limit is well- 
known (see e.g. [3, 19, 20]). The sequential limit is the limit of small 
probabilities, or equivalently the Hamiltonian limit in the language of 
vertex models. In order to be more precise set 

x := p2 (2.7) 
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for x =p,  q, 0r fl, ~, fi such that one can make an expansion in powers of 
p. An immediate consequence of the definitions is that 

~--='0 -ph ,  ~ = ~  --phL, ~='~ --phR (2.8) 

with matrices h, h L and hR that are independent of p and describe the local 
processes with rates b, 0, ~ fl, ~ and S. The transfer matrix T now takes the 
form 

T= ~ --pH + C(p 2) (2.9) 

where the Hamiltonian H contains only nearest-neighbour interactions. 
After a similarity transformation, this Hamiltonian becomes the Uq(sU(2))- 
invariant Hamiltonian of the ferromagnetic XXZ-Heisenberg model [21] 
with additional boundary terms h L and h R (see e.g. [20]). Since this 
Hamiltonian does not have any sublattice structure one can make a 
homogeneous matrix-product ansatz. We set A = A  = E  and B = / } = D  
such that the operators with and without hat in (2.3) become equal. Then 
one imposes the following relations [3, 19, 20] (see also [9])  at the 
boundaries 

(WI hL ( E ) = <  WI ( 1 1 ) ,  hR ( E ) I V ) =  - ( 1 1 )  IV) (2.10) 

and the following algebra for the bulk 

h { ( E ) |  ( E ) }  = { ( E )  | ( 1 1 ) _  ( 1 1 )  | ( E ) }  (2.11) 

With this ansatz the right term in (2.11) at site x cancels the left term at 
site x + 1 if the complete Hamiltonian is applied. Finally, one is left with 
two boundary terms which are cancelled by (2.10). 

After inserting the explicit matrices h, h L and hR one finds that (2.10) 
and (2.11) are equivalent to 

pDE -- :lED = D + E 

(:D-- JE) IV) = IV) (2.12) 

( W[ (o2E- ~D) = ( W[ 
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This algebra can be used to compute expectation values in the stationary 
state efficiently by means of recurrence relations (see [3, 19, 20]). The 
operator C := E + D acts like a transfer matrix in the spatial direction and 
for example the density profile is given by the expectation values 
('rx) = ( WI CX-'DC N-x IV)~( Wl CN IV). 

One of the motivations of this work was to find out how the 
mechanism (2.4), (2.5) is related to the known mechanism (2.10), (2.11 ) in 
the sequential limit. To explore this and the problem in general, we first 
study two special cases. 

3. DIRECT SOLUTION 

In this section we solve (2.6) for the two simplest representations of 
the operators. This will indicate how to proceed in general. 

First consider a one-dimensional representation, where the operators 
are represented by numbers, the boundary vectors can be discarded and 
one is dealing with a scalar product state. One finds that such a solution 
is possible if the relation 

( 1 - q ) ( f l 7  - 7 - f l  + f l o~ ) (6o~  - o~ - 6 + f lo~)  

= (1  - p ) ( ~ r  - ~ - ~ + 6 ~ ) ( ~ ,  - r - p + p~,)  (3.1) 

between the parameters holds. This condition is invariant under the 
simultaneous exchanges of p with q, ~ with 6 and fl with 7, which mirrors 
the reflection symmetry of the system. For 7 = 6 = 0, (3.1) simplifies and 
becomes, for fixed p and q, a hyperbola in the ~-fl-plane which intersects 
the axes at ( p - q ) / ( 1 - q ) ,  see also [15]. In the sequential limit one 
recovers Eq. (78) of [20]. 

More interesting is the case of a two-dimensional representation which 
is known to exist in the deterministic [10] and sequential limits [20]. 
Since, as mentioned above, the quantities 

C:=A+B,  d : = A + / ~  (3.2) 

will play the r61e of spatial transfer matrices, it is desirable that they have 
a particularly simple form. Summing the columns in (2.5) gives [ C, ~ ]  = O, 
so that they can be simultaneously brought into diagonal--or more 
generally Jordan normal--form. We will only consider the first case. It was 
shown in [ 10] that for invertible C, d one can even choose 

C =  (~ (3.3) 
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A solution of  the bulk equat ions (2.6a) with upper  t r iangular  A, J ;  B, /~ 
and diagonal  C = ~ is 

.-(i o ) 
( d ( p  - q)(p + q -  1) + p(1 - p )  )( d ( p  - q) - p  ) 

( d ( p - q ) - p +  1) pq 

~ r  1) 1 \ 
~r -- q) - -p  + 1 ) 0 ( q -  1 ) ( d ( p - q ) - p )  d 

( d ( p  - q) - p  + 1) p 

(3.4) 

(o 1 ) 2 =  d ( d ( p - q ) ( p + q - 1 ) + p ( 1 - p ) )  
( d ( p - q ) - p +  1) p 

with a free constant  d .  Using (2.6b) and demanding non-trivial  bounda ry  
vectors IV) and [W)  then fixes it and also gives the following relat ion 
between the parameters:  

f ( p ,  q; o~, fl, 7, 6) = f (q ,  p; 6, 7, fl, ~x) (3.5a) 

with 

f ( p ,  q; 0~, fl, 7, ~) := ( 1 --p)( 1 - q) p3a2f12 

+ ( 1 - p )  pq27~(afl( 1 -- q)2 + ( 1 -- q)(q(o~ + fl) 

- -  (6o~ + f iT) )  - -  q ( (  1 - Y) 6 + 7 - -  q ) )  

+p2q2(a7( ( 1 -- 6) 2 -- ( 1 -- fl)2) + q276 ( 1 - o0(1 -- fl)) 

+p2q3(flfi( 1 -- 00 2 + aT( 1 -- fl)2 _ 76 (1 -- a)( 1 -- fl)) 

(3.5b) 

This is the condi t ion for the existence of  a two-dimensional  mat r ix-product  
state. 

Obviously,  (3.5) is ra ther  complicated in general. As before, choosing 
7 = f i = 0  leads to a marked  simplification. Then  one has, for p 5 0 ,  

( 1 - q ) { ( 1 - p - q ) ~ f l + q ( ~ + f l ) }  = q ( p - q )  (3.6) 

which is ano ther  hyperbola  in the 0c-fl-plane, but  with the same intersection 
points as for the scalar case. 
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In the sequential limit, Eq. (81) of [20] is re-obtained from (3.5). 
Finally, for deterministic hopping to the right, i.e. p = 1 and q = 0, the 
condition (3.5) is satisfied automatically. This is consistent with [ 10] where 
a two-dimensional representation for y = 6 = 0 was found. However, one 
cannot set p = 1 in our solution, because then singularities appear in (3.4). 

One may wonder if the conditions (3.1), (3.5) for the two types of 
product states are linked to the specific mechanism (2.4) and (2.5). 
However, one can eliminate the alternating structure by working with 
block-spin variables for two neighbouring sites. Then one can show, using 
just short chains, but no specific mechanism, that a homogeneous matrix- 
product ansatz with N-independent matrices leads again to (3.1), and at 
least for y = ~ = 0, also (3.6) is obtained. 

With these explicit solutions it is straightforward to calculate physical 
quantities like the density profile, the current or the correlation length. 
Using proper variables, the results can be written in compact form. This is 
sketched in Appendix A. 

More important here is the following observation: The matrices in 
(3.4) satisfy 

A - A = B - B - d (  1 - d ) ( p  - q) 
1 - p  + (p  - q) ~ '  

~ =: g(p, q; a, fl, ~, fi) "B (3.7) 

i.e. the differences are multiples of the unit matrix. An analogous result 
holds trivially in the one-dimensional case. Using now (3.7) to eliminate J 
and/~, the conditions (2.6) turn into 

( W[ (~A -- ),B) = g ( W[ 

(pB-- ~A) iV) =g(1 --/~--~) IV) (3.8) 

pBA - -qAB=g((1  --q) B + ( 1  --p)  A) 

This looks very similar to the relations (2.12) of the sequential limit and 
can be used in two ways. 

Firstly, one can indeed recover (2.12) by using (2.7) and taking p to 
zero. Then all operators as well as the boundary vectors have finite limits, 
the sublattice structure vanishes and the function g in (3.7) behaves as 
g(p, q; o~, fl, 7, 6) ,,~ p~(p, q; r fl, 9, fi). Dividing by ~ and setting finally 
E:=A/~,, D:=B/~,, one recovers precisely (2.12). This shows how one 
mechanism goes over into the other. 

Secondly, one can relate (3.8) to (2.12) quite generally. This provides 
a way to treat the parallel dynamics problem for arbitrary representations 
with the property (3.7) and is done in the following. 
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4. M A P P I N G  ONTO THE H A M I L T O N I A N  L I M I T  

In this section we map the problem for parallel dynamics to the one 
with sequential dynamics. We impose the condition (3.7) with g = 1 (which 
corresponds to a different normalization of A, B, `4 and /~) for general 
values of the parameters, so that 

B - - B = A - - ` 4 = ~  (4.1) 

holds (this has also been proposed in [ 15] ). This choice may be a restric- 
tion in the sense that representations of the algebra (2.6) might exist that 
are not equivalent to one where (4.1) holds. We will now show that (4.1) 
can be used to lift the Fock space representation of the algebra (2.12) to 
a representation of the algebra (2.6) and therefore one can (at least in 
principle) compute stationary expectation values for arbitrary probabilities 
~, fl, 7, d, p and q. Even if other representations of the parallel algebra 
should exist, they would have to give rise to the same groundstate that can 
also be obtained from a representation where (4.1) is valid. Thus, from a 
physical point of view it is completely sufficient to study only representa- 
tions satisfying (4.1). 

We attempt a mapping to the sequential algebra (2.12) by identifying 
E with a suitable linear combination of A and `4 and D with another 
suitable linear combination of B and/~. This leads to the following ansatz 
for the operators A, .4, B and/~ in terms of E and D: 

A = n e E  + e'O, 

B = n D D - d ~ ,  

A = n E E - - ( 1 - - e )  

B = n o D + ( l - d )  
(4.2) 

where the free constants nE and nD reflect the freedom of choice of relative 
normalization of the representations and the constants e and d correspond 
to the points of identification. Inserting this ansatz into (2.6a) one obtains 
precisely one independent relation between E and D: 

nEnD(pDE- -  qED ) = nEE( d(p - q) + ( 1 - p )  ) + nDD( -- e(p -- q) + ( 1 -- q) ) 

+ e d ( p - q )  +e(1 - - p ) -  d(l - q )  (4.3) 

In order to be able to identify this with (2.12) the constant term in (4.3) 
must vanish. This is ensured by choosing 

d(1 --q) 
e - (4.4) 

d ( p - q )  + ( 1 - p )  
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Also the linear term in E must appear with the same coefficient as the 
linear term in D on the r.h.s, of (4.3). This is the case if 

d ( p - q ) + ( 1  - p )  ( d ( p - q ) + ( 1  _p))2 
no = - n e e ( p _ q ) _ (  1 _ q ) - n E  ( 1 - p ) ( 1 - q )  

Using (4.4) and (4.5) the relation (4.3) now reads 

(4.5) 

Inserting the ansatz (4.2) into the boundary equations (2.6b) leads to 

( W[ ~xnEE-- ~noD flnoD -- dneE 
1-o~e-~,d = ( W I ,  l + , ~ e + f l d _ ( d + f l )  l V ) = f V )  (4.7) 

The equations (4.6) and (4.7) are identical to the algebra of the sequential 
limit (2.12) if one identifies the rates in that limit as follows 

d(p - q) + ( 1 - p )  d(p - q) + ( 1 - p )  
fi =ne  P, El=ne q, 

(1 -p ) (1  - q )  (1 -p ) (1  - q )  

1 1 
~=nE 1 - o ~ e -  ~d ~ f l = n o  1 + fie + f l d - ( f i  + fl) fl 

1 ~ = n e  1 ~=no 
1 -o~e-) ,d  ~' 1 + 6 e + f l d - ( ~ + f l )  

Here, the constants e and nD are fixed by (4.4) and (4.5). The constant ne 
remains free and reflects the freedom of normalization of the algebra in the 
sequential limit. It is possible to choose ne such that the "renormalized" 
rates in the bulk are equal to the hopping probabilities, i.e./~ = p  and 0 = q. 
Also any other choice for ne is permitted because ne has to disappear from 
the final result for any physical quantity. In the following we choose ne = 1 
in order to simplify the presentation, but we have also checked that if it is 
kept, the final results are manifestly independent of it. Also the constant d 
is still free in (4.8) and for explicit computations it will be fixed to a value 
that ensures n o = n  E ( =  1). This choice is crucial, because then A + B = 
E + D +  ( e - d )  and the operators C for the parallel and sequential case 
may be identified with each other. 

From (4.8) one sees that in the sequential limit the renormalized 
parameters differ from the initial probabilities only by a factor nE, which 
also equals no because of (4.5). Therefore, choosing ne= 1, both sets of 
parameters and also the matrix-product states become identical. 

(4.8) 

d(p - q) + ( 1 - p )  
( p D E -  qED) = E + D (4.6) ne ( l _ p ) ( l _ q )  
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One can also check that the conditions of Section 3 for having a one- 
or two-dimensional representation can be recovered from known results. 
All one has to do is insert (4.8) where nE and d are kept as free parameters 
into the conditions for the sequential limit [20]. The d-independent factors 
of these renormalized conditions are precisely (3.1) and (3.5) respectively. 
So, the simple scalar product state as well as the two-dimensional matrix- 
product state of the general case can be obtained by a simple "renormaliza- 
tion" process from the ones of the sequential limit. The same holds also for 
higher-dimensional representations whose existence was shown in [20]. 
However, the operators C in the two cases differ by the additive constant 
e - d and therefore results for expectation values in the parallel case cannot 
be simply taken from the sequential limit. 

5. CURRENT AND PHASE D I A G R A M  

Now we show how to use the mapping of the previous section to com- 
pute the current, following the treatment in [ 19] of the sequential case. 

According to [19, 20], the phase diagram in the sequential case is 
given by a single function /c+ of the rates at either boundary, i.e. by 
/c+(~,~9) and /c+(fl,~). The same will hold in the parallel case, if the 
quantities (4.8) are inserted into the functions K+. To be more precise, 
the parallel case will be described by functions /~+(0~, ~,)=/c_+(0~, 9) and 
/~_+(fl, c~)= x• c~) which are obtained from the/c• of the sequential case 
[ 19, 20] by choosing the constant d in the mapping (4.8) such that n D = nE 
( =  1 ). Explicitly one finds 

1 
/~ • y) - ( - x ( 1  - q) + y(1 - p )  + p  - q 

2x x/( 1 - q)(1 - p )  

+_x/(--x(1--q)+ y(1- -p)+p--q)2  +4xy(1--q)(1--p))  (5.1) 

The quantities /~+ may be regarded as effective input/output rates at the 
boundaries and should be used only for p > q (results for the case p < q can 
be obtained by applying parity, i.e. by exchanging p with q, ~ with c~ and 
fl with ~,). For a more detailed discussion compare Appendix A. 

The current can be computed in the interior of the system at those 
places where hopping processes are possible during the next time step and 
is given by expectation values of the operator 

Y =pBA -- qAB (5.2) 

During the first time step it can also be computed at the boundaries where 
it is given by expectation values of the operators JL=o~A-TB and 

822/88/I-2-23 
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JR =fl/~--ft.4 respectively. Using (2.6b) and the ansatz (4.1) one can check 
that in all three cases 

( W[ C N 1 IV ) 
J=  (W] CNIV)  (5.3) 

holds. This means that the current is simply given by ratios of the 
normalization constants (W[ c N i v )  for different N if the condition (4.1) 
holds. Thus, in order to compute the current in the thermodynamic limit, 
the behaviour of such ratios has to be studied for large N. 

One finds from (4.2) that 

C = A  + B = E  + D + ( e - - d )  (5.4) 

In [ 19] the operators D and E have been expressed in terms of the crea- 
tion and annihilation operators F and F t of a q-deformed harmonic 
oscillator by setting 

F +  1 F + + 1 
- -  E = (5.5) D = / ~ - - 0 '  /~--0 

Inserting this into (5.4) leads to 

F + F * + 2  
C = (5.6) P-O 

with 

2 = 2 + (e - d)( f i  - ~1) = 
2 - q - p  

~/ (  1 - q)( 1 - p )  
(5.7) 

First we consider the case ~+(a, 7) < 1 and ~+(fl, 6 ) <  1 which corresponds 
to phase III below. According to [ 19] this is the maximal current phase 
and to obtain J, the same computation as there can be used. In Eq. (3.39) 

L has to be replaced by 2 because of the extra loc. cit. the coefficient 2 of ci~ 
constant in (5.6). Tracing the effect of this modification one finds that for 
parallel dynamics the current in the maximal current phase is given by 

J /~-c~  x / 1 - q - x / 1 - p  (5.8) 
2 + 2  x / 1 - q + x / ~ _  p 

The currents for the other two phases can be obtained from similar 
modifications of the computations in [ 19]. It is sufficient to perform this 
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computation for ~+(fl, d) > te+(0~, y) and ~+(fl, d) > 1 which will corre- 
spond to phase I. The relation (4.7) of [ 19] remains valid with the new 
parameters and reads 

(WIG N IFlV),~tc+(fl, 6)(Wl C N l IV)=/~+(/~,c~)(WIC N l IV) 

(5.9) 

One can further rewrite C as follows using (5.4)-(5.7) 

=~1 (_(fiD_dE)+fi+d+c~(2-2) fi-O t~')-\ (5.10) 

Making first use of (5.10) and then of (5.9) one finds the following 
recurrence relation for the normalization constants (generalizing Eqs. (4.8) 
and (4.9) of [19]) 

( W] CNIV) 

_1  1 { ( f i + g + g ( 2 _ Z ) _ / 5 + 0 ) ( W i  cN l l v )  

+( /~+d) (W[  C N 'F[V)} 

1 1 { ( / ~ + S + c ~ ( 2 - 2 ) - p + ~ )  
~---2-~0 aP 

-~-(~-~ (~)/~ + (/~, (~)} (W]  C N 1 IV) (5.11) 

Inserting this result into (5.3) one arrives after a straightforward computa- 
tion at the formula presented in Table I. The result for the other case 
~+(~, y) > ~+(fl, d) and ~+(a, y) > 1 (phase II) can be obtained simply by 
replacing fl by 0~ and d by y. 

These results can be verified using the one- and two-dimensional 
representations of Section 3 (compare Appendix A). In the limit of small 
probabilities the formulae for the current in all three phases go into the 
ones obtained for sequential dynamics, namely Eqs. (4.6), (4.10) and (4.11) 
of [ 19], respectively. 

Table I also contains results for the densities at the even and odd sites 
in the bulk of the system, where in regions I and II it is approximately 
constant. These were obtained for the lines (3.1), (3.5) using the explicit 
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Table I. 
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Results for the Current J and the Bulk Densities (Tx>, (§ on the 
Odd and Even Sublatt ices, Respectively" 

Phase J < rx > < fx > 

(p -q ) - ( f l+g) (1 -q+~_( f l ,~ ) )  t?+(fl,6) ~+(fl, g) 
( p - q ) ( 1 - f l - g )  1 - q + Y + ( f l ,  6) 1 - -p+ f f+ ( f l ,  ~) 

( p - q ) - ( c ~ + 7 ) ( 1 - q + Y  (c~,y)) 1 - p  1 - - q  
~x 

(p - -  q)(1 --c~-- 7) 1 - -p  +ff+(0~, 7 ) 1 - -q+f f+(cq  7) 
II 

III 

" Formulae containing ~ + = ~/( 1 - q)( 1 - p) t~ +_ are valid for p > q. 

one-and two-dimensional representations of Section 3, as outlined in 
Appendix A. They can be used to classify the regions I and II according to 
high and low densities, respectively. The formulae are also written in terms 
of ~+, since for example numerical computations (as described in 
Appendix B) indicate that they hold in the entire regions I and II. On the 
coexistence line ~+(~, 7)= x+(fl, 3) which separates these two regions the 
density profile is linear in space. This corresponds to representations where 
C has a non-trivial Jordan form. 

In addition, one can also obtain an expression for the correlation 
length (see Appendix A) that, according to the numerical computations 
outlined in Appendix B, seems to be valid in the parts of phases I and II 
where ~+(~, 7) ~+(fl, 3) > 1, 

All these results can be used to draw the phase diagram which turns 
out to be essentially the same as the one for the sequential limit [ 19, 20]. 
It is shown in Fig. 3 in terms of the variables ~+(x, y), using a logarithmic 
scale. There are at least three distinct phases: 

I: ~+(fl, ~)>~+(~,  7), ~+(fl, 3 )>  1 (high density) 

II: x+(~, 7) >x+(fl ,  6), ~+(~, 7) > 1 (low density) 

III: ~+(~, 7) < 1, ~+(fl, 3) < 1 (maximal current) 

Phases I and II can be mapped onto each other using parity and particle- 
hole symmetry. This "duality" transformation exchanges zx ~ 1 -  fu+~-x,  
0 ~ f l ,  7~--~ and keeps p and q unchanged. In particular ~+(~, 7) is 
exchanged with ~+ (fl, 3) from which one obtains the mapping between the 
two phases. All our results have the correct behaviour under this duality 
transformation. 
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Fig. 3. Phase diagram of the kinetic model. The dotted line shows the condition (3.1) for a 
one-dimensional representation. The condition (3.5) for a two-dimensional representation is 
shown for two choices ofp and q: The symbol "o" is for p =0.75, q =0.25 and the symbol "." 
is for p = 0.6, q = 0.4. 

The dotted line in Fig. 3 shows the condition (3.1) for the existence of 
a one-dimensional representation which can be cast in the form ~+(~, y) 
t~+(fl, fi)--1. The figure also shows the condition (3.5) for having a two- 
dimensional representation with two choices of p and q. In both cases 
~+(~, y) ~ +(fl, 6 ) = p / q  is verified numerically�9 For y - - 6  = 0, it can also be 
shown analytically that this condition is equivalent to (3.5). This suggests 
that the condition for having a two-dimensional representation is a hyper- 
bola in the ~+(0~, y ) - ~ + ( f l ,  6) plane. By changing the value of p/q this 
hyperbola can be swept over the entire region above the dotted line 
marking the one-dimensional representation�9 

For a more detailed discussion of the case 7 = 6 = 0 we refer to [ 22]. 
We mention that the result for the current can also be obtained by using 

the bulk-densities in the mean-field formula J=p(~x) (1 - ( rx+l ) ) -  
q ( 1 -  ( ~ x ) ) ( z x + l ) .  In regions I and II this can be shown analytically for 
7 = 6 = 0. In region III  it can be verified numerically. 

In Appendix B we explain how to use (3.7) with g - -  1 for numerical 
computations on finite chains. In this manner one can e.g. check the results 
of this section and Appendix A. In Appendix C we show how one can use 
the same representation to compute correlation functions for the case of 
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symmetric diffusion p = q where the results of this section and Appendix A 
may not be applied directly, but where the algebra is much simpler. 

6. D I S C U S S I O N  

We have considered the diffusion of hard-core particles between two 
reservoirs for a particular kind of parallel dynamics. The results show that 
the stationary state has a similar matrix-product form as in the sequential 
case and can actually be obtained from that limit. Therefore the physical 
properties, in particular the phase diagram, are also similar although the 
formulae are more involved. 

In [ 15] it was found that the same is true for yet another type of 
dynamics, where the stochastic motion takes place step-by-step along the 
chain. This can be visualized nicely in the vertex-model picture as shown in 
Fig. 4. The processes take place in a diagonal strip of the lattice and the time- 
evolution operator is seen to be the usual row-to-row transfer matrix Tro w of 
the vertex model, with a shift in the numbering of the upper row of variables 
and additional boundary vertices. Using the same exchange mechanism at 
each vertex as in Section 2, one finds that the pair of operators A and B only 
appears in the intermediate steps and the matrix-product state becomes a 
homogeneous state involving only the operators d and/~. An independent 
treatment of this matrix-product state would involve computations similar to 
those that we have presented here. Alternatively, one can also directly use our 
results for the current and correlation length for the updates as in Fig. 4 (the 
densities are only the same on the even sublattice) [ 15 ]. 

Trow 

Fig. 4. Representation of a step-by-step dynamics starting at the right end of the system as 
a vertex model. 
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In order to illustrate the connection to vertex models further, let us 
also present a graphical representation of the matrix-product mechanism 
used here. Denote the pair of operators A, B by a "~ and the pair A and 
/~ by a "o." A dotted line between them indicates that their product is to 
be taken while a termination of the line inside them means that the vectors 
(W] and IV) have to be multiplied from the left and right respectively. 
Then (2.5) and (2.4) can be depicted as follows (compare also Fig. 3 of 
[13]): 

e ~  . . . .  �9 e--- , ..... ~ e  = o , .... " ~  . . . . .  e .  
. . . . . . . . . . . . . .  O /  (6.1) 

The first identity is strikingly similar to the Yang-Baxter equation (see 
e.g. Chapter 2.3 of [23 ]) which for vertex models reads graphically 

= ( 6 . 2 )  

In both cases one can "pull" a line through the vertex and the corre- 
sponding quantities exchange places. The boundary Yang-Baxter equa- 
tions, involving the so-called K-matrices, are more complicated. This leads 
us to the question of integrability of the model. As already mentioned, the 
time evolution operator in the sequential limit is a Heisenberg Hamiltonian 
with boundary fields. It is therefore integrable in the sense that it belongs 
to a whole family of commuting operators [ 24, 25 ]. One would expect that 
this also holds for the full vertex model. A proof would have to follow the 
lines of [ 24-26 ]. In any case, the integrability would be more relevant for 
the time behaviour of the system than for the stationary state which we 
determined. 

Occasionally, it has been conjectured that there is a connection 
between the existence of matrix-product states and integrability. However, 
examples of scalar product states like in [ 11 ] show that this cannot be true 
in general. Nor does the construction in [27] ensure integrability. It 
amounts to transforming the bulk relation in (6.1) into a commutator as 
in (6.2) by going over from the eigenvector Iq~) to the operator P =  
I~/,)(q~]. However, this does not help in finding other eigenstates because 
P is a simple projector whose unique eigenvector with eigenvalue 1 is [q~) 
while a highly degenerate eigenvalue 0 accounts for all other vectors. 

Finally, one may ask if the parallel dynamics considered in this work 
might be used in other related problems. Here, two situations come to 
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mind. One would be a model with coagulation and decoagulation in addi- 
tion to the hopping processes. With a proper tuning of the parameters, this 
is a free-fermion problem in the sequential limit [28] and the stationary 
state has been shown to have a matrix-product form with four-dimensional 
matrices [ 9 ]. As in the present work, there are four matrices involved, two 
for the homogeneous matrix-product state and two in the generalization of 
the cancellation mechanism (2.10) and (2.11). Indeed, if the mechanism 
(2.4) and (2.5) should be applicable to more general situations than 
discussed here, one would in general not expect the differences A -  ,4 and 
/ ~ - B  to be proportional to the identity and thus one would find the more 
general matrix-product mechanism of [9] in the sequential limit. However, 
the choice C=  ~ is always possible independent of the details of the 
dynamics. This would lead to a linear relation between the matrices in the 
sequential limit, but one can check that the four matrices used in [ 9] are 
linearly independent. Thus, whether the problem including coagulation and 
decoagulation admits a matrix-product state also for parallel dynamics, 
and if so, with which mechanism, remains to be investigated. 

The other problem is hopping on a ring with a defect where the rates 
are modified. Formally, this case is obtained by replacing the product 

| 5r of the boundary matrices by a hopping matrix if-. This model has 
already been solved by a modified Bethe ansatz for the case of unidirec- 
tional deterministic motion everywhere except at the defect [29]. For a 
certain fixed particle density, the stationary state is also expressible in the 
form of a two-dimensional matrix product [ 30]. One may speculate that 
our representation (3.4) of the bulk algebra may help to solve the general 
model with a defect. In particular, the observation that the differences of 
the matrices with and without hat are proportional to the identity is a pure 
bulk property and thus one may hope that techniques like those we have 
used e.g. in Sections 4 and 5 may be useful also for systems with a defect. 

A P P E N D I X  A. P H Y S I C A L  Q U A N T I T I E S  

Given the explicit representations of Section 3, one can determine e.g. 
current, density or correlation length in the stationary state. This provides 
a physical picture and also a check on the results for the current obtained 
in a different way in Section 5. 

The current is particularly simple because it is independent of position. 
For the scalar product state one finds, using the expression J= (o~A -yB) /  
C at the left boundary: 

J _ or - 7~ (A. 1 ) 
~ + p + r  + ~ - ( o r  r ) ( / ~ + a )  
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However, this is valid under the constraint (3.1) and can therefore be 
brought into various other forms. It turns out that the appropriate variable 
is the ; +  introduced in Section 5. Then J can be written in the two forms 
given in Table I. For the two-dimensional representation (3.4) the current 
depends on the length N, but the limit N ~ oo can still be computed easily 
upon observing that only matrix elements corresponding to the largest 
eigenvalue of C contribute to this limit. For the two-dimensional matrix- 
product state this leads to the distinction between region I defined by 
C2, 2 > C1.1 and region II in the other case. One finds that the expressions 
in Table I also hold for the two-dimensional matrix-product state. 

The same feature is found for the density which is given by ( z x ) =  
(W[ Cx- lBC N-x [ V ) / ( W  I CN[V) for x odd and by an analogous 
expression ( f x )  with B--* B for x even. These quantities are independent 
of x for the scalar product state. This is not the case for the two-dimen- 
sional representation (3.4), but in the bulk the densities become constant 
and can be computed again from appropriate matrix elements, e.g. (zx)  ---- 
B1, 1/Cj, 1 for region II. Expressing them in terms of if+ one obtains for 
both product states the forms given also in Table I. Note that in the 
sequential limit ( f x )  ~ (z~)  and we recover the result Eq. (100) of [20]. 
For the special case 7 = 6 = 0 the expressions for the densities simplify to 

1 - q  1 
( r x )  = 1 --t ip--q (zx)  1 --/~ (zx)  (A.2a) 

o~ 1-- p 
1 --o~p--q' ( f x )  = ( 1 - o O ( Z x )  +or (A.2b) 

for region I or II, respectively. 
Finally, the correlation length I(I for the two-dimensional product 

state is given by exp(1/()= C2,JC1, ~ and can again be written in terms 
of t?+:  

(~) ff +(ct' 7)(1-P+t?+(fl '6))(1-q+t?+(fl '6)) 
exp - t?+(fl, 6)(1 - p  + ;+(0c, 7))(1 --- q +--~ +-~-, 7)) 

(A.3) 

To be precise, we have established (A.3) analytically for either 7 = 0  or 
6 = 0. For both probabilities non-zero we have performed a careful numeri- 
cal verification. As expected, the result Eq. (102) of [20] is recovered in the 
sequential limit. 

The result (A.3) can also be used to translate the inequalities between 
C2, 2 and C1,~ into such between t?+(~, Y) and t?+(fl, fi). On the manifold 
(3.5) one finds numerically that t?+(~, 7) t?+(fl, 6) > 1. This can be used to 
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infer from (A.3) that (72.2 > C1, 1 iff ~+(fl, 3 ) >  ff+(~, y) so that phase I is 
characterized by either condition. 

The results cited so far are not confined to the manifolds for which 
they were derived. In the case of the current, the treatment of Section 5 
shows that the formulae are valid in the whole regions I and II. For the 
densities this has not been proven but there is strong numerical evidence 
for it, compare also [20]. Similarly, it is likely that (A.3) holds for all 
parameter values with ~+(~, 7) ~ +(fl, 3) > 1. The boundary of this region is 
determined by the scalar product state, and the correlation length diverges 
as one approaches it. 

Finally, let us comment on the ~+ which plays the rSle of a unifor- 
mization variable. Consider first the case y = g = 0 .  Then ~+(x, 0 ) =  
- (  1 - q ) +  ( p -  q)/x and ~7 (x, 0) = 0, i.e. for p # q the quantity ff +(x, 0) is 
basically the inverse of the probability x which is related to particle input 
(if x = a )  or output (if x=fl). For y > 0 ,  the quantity ~+(x, y) can be 
thought of as an effective input and output rate. For example, for small 
hopping probabilities in the bulk (p, q ~ 0 )  one has ff+(x, y)~y/x .  In 
general, Y+ takes into account the effect that a particle is injected, travels 
into the system, returns and is removed at the same boundary. 

APPENDIX B. COMPUTATIONS ON FINITE CHAINS 

We show here how to compute correlation functions efficiently using 
a representation of the algebra where (4.1) holds. Then A and B satisfy 
(3.8) with g = 1. A convenient basis for the Fock space is given by B x IV) 
and one then has to compute ABxlV). In order to describe how this can 
be done e.g. on a computer let 

Ix> : = B  x IV}, Ix, y> :=BXAB y IV} (B.1) 

The bulk relation in (3.8) (with g = 1) can be used to commute an operator 
A one place to the right which in terms of the above vectors yields the rela- 
tion 

1 
Ix, y> = , ( p  Ix+  1, y - -  1> --(1 --p)[x,  y - -  1} --(1 - - q ) [ x +  y})  

q 
(B.2) 

for y > 0. As soon as the operator A hits the right boundary one can use 
the second boundary equation in (3.8) with g = 1 to replace A by B: 

1 
Ix, 0> = ~ ( f l  Ix+ 1 } - ( 1 - ( f l + ~ ) ) I x > )  (B.3) 
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By definition, the algebra acts on the states (B.1) as 

A Lx) = 10, x ) ,  B Ix )  = Ix + 1) (B.4) 

The rules (B.2)-(B.4) are sufficient to express any state A B A A . . .  IV) in 
terms of the Ix)  and one does not need the original algebra anymore. In 
order to be able to compute words (i.e. scalar products with ( W I )  a final 
constant sx := ( W[ x )  is needed. It  can be computed by creating an A at 
the left boundary  using the first boundary  relation in (3.8) (with g = 1). 
This leads to 

1 
Sx + 1 = ~  (0~( W I O, x )  --  Sx) (g,5) 

which amounts  to a recurrence relation for the s x after moving the A to the 
right boundary  using the previous relations. Setting s o = 1, one is now able 
to compute the value of any word ( W[ A B A A  . . .  IV) exclusively from the 
rules (B.2)-(B.5). 

It  is possible to solve these recurrence relations in closed form 
following the lines of [ 19]. However, also formulae of the type as in [ 19] 
are best evaluated numerically using a recursive procedure. The recipe 
presented above is sufficient to compute correlation functions numerically 
on finite chains where a length N--- 100 is no major  problem. However, in 
order not to do a computat ion twice, one should store the expansion of the 
vectors Ix, y )  in terms of the basis vectors Ix) .  One also needs to be care- 
ful with the numerical range because some of the numbers grow exponen- 
tially with N, e.g. (W[ C N [ v ) , ~ J  N and I J - l [ / > l  can become quite 
l a rge /  

Figure 5 shows a density profile obtained in this manner  on a finite 
lattice with N = 200. The parameters  yield ~+ (o~, 7) = 0.912 and ~+ (fl, 6) -- 
0.801 which corresponds to a point at the top right corner of phase I I I  in 
Fig. 3. The distinction between the two sublattices is clearly visible, so is 
the influence of the boundaries. As a byproduct  in this computat ion one 
finds the current with these parameters  for N =  200 using (5.3): J =  0.2690. 
This is to be compared to the result J=0 .2679  obtained from (5.8) in the 
thermodynamic limit. Computat ions  like this one provide room for more 
detailed investigations. 

4 An implementation in C which takes care of all these details is available on the WWW under 
URL http://www.physik.fu-berlin.de/-ag-peschel/software/mp.html. This program does not 
only compute the current, the density profile and the two-point function on a finite chain, 
but also implements our results in Table I as well as the correlation length (A.3) and thus 
provides a simple way for checking their validity numerically. 
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Fig. 5. A density profile in the maximal current phase with N= 200 sites and p = 0.75, 
q=0.25, ,=0.5, fl=0.6, 7=0.1 and 6=0.2. The full line shows the density (Tzx+l) and the 
dashed line the density (f2x)- 

A P P E N D I X  C. S Y M M E T R I C  D I F F U S I O N  IN THE BULK 

Here  we discuss the special case of  symmetr ic  diffusion in the bulk,  i.e. 
p = q. In this case, which was also considered in [ 16], it is convenient  to 
work  with the ope ra to r  B and the spatial  t ransfer-matr ix  C. Inser t ing the 
choice (4.1) into (2.6) leads to 

( w[ ( , c -  ( ,  + ~) s )  = ( wl, 

[B, C]  = 1-p C 
P (C.1) 

((fl + d) B-OC)  I V ) = ( 1 - f l - 6 ) I V )  

Using these relat ions one immedia te ly  finds by  either c o m m u t i n g  the B to 
the right or  the left b o u n d a r y  

( W [  C x IBCN-x  IV)  

1 - p  ( N -  + = X) 
P 

1 - ~ - 6 )  6 ~..]_(~ (w[cN I[V).-~--~(W[CN[V) 

1) - -  1 <WjCN_~IV>+cz+ 7 ( W[ C N I V )  ( C . 2 )  
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From these two expressions the term ( W I  C N 1 [ V) can be eliminated 
yielding the density profile for the odd sites 

(o~(fl + 6 ) ( N -  1 ) - (aft - 76) (x  -- 1 ) ) 
( r x )  -- + (p/(1 --p)){a(l  --fl) + 6(1 --cQ}/ (C.3) 

[(~ + ,)(fl + 6 ) ( N - 1 ) +  (p/(1 - p)){e(1 - fl)~ 
\ +6(1 --oQ + 7(1 --6) +fl(1 -- 7)} J 

A similar computation with/}  = B + ~ yields the profile for the even sites. 
The expression differs from (C.3) only in the last curly bracket in the 
numerator which becomes { 0~(1 - 6) + 6(1 - 7)}- In the thermodynamic 
limit N--* oo this difference between (zx)  and (~x)  disappears and, more 
strikingly, the densities become independent of the bulk probability p. The 
result after the limit is identical to the one obtained in [ 31 ] for the case 
of sequential updates. 

For finite N, the density profile (C.3) is linear in the spatial variable 
x (as one can already see from (C.2)). For p = q the current is related to 
the density profile by J = P ( ( f x )  - (  vx+ 1))" Inserting the result (C.3) one 
finds that 

~ f l - 76  N - '  (C.4) 
J"~ P ( 1 -p) (o~  + 7)(f l  + 6) 

for N large. Physically, this means that the pumping effect at the ends is 
not sufficient to drive a current through an infinite system. The results 
(C.3) and (C.4) show that only one phase exists which corresponds to the 
coexistence line in Fig. 3. 

It is straightforward to apply the method used above for computing 
the density profile also to higher correlation functions. 
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